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ABSTRACT 
Concept mapping is a technique that represents knowledge in graphs.  It has been widely adopted in science 
education and cognitive psychology to aid learning and assessment.  To realize the sequential manner in which 
students develop concept maps, most research relies upon human-dependent, qualitative approaches.  This 
article proposes a method for sequential pattern analysis, inspired by sequential pattern mining algorithms 
generally applied to commercial forecast and decision supports.  The method can be programmed for automatic 
execution and thus reasonably fast, yielding reproducible results.  To validate the proposed method, 187 college 
students were recruited to create respective concept maps on a computerized concept mapping system.  While 
the concept mapping data was analyzed by the sequential pattern analysis method, it was found that the 
mapping sequences used by students that created superior concept maps were similar and had a pattern in which 
propositions were formed in a temporal order from more inclusive to less inclusive.  Conversely, no similarity 
was found in the concept mapping sequences by those who created inferior concept maps.  The findings support 
theoretical expectations about concept mapping and are consistent with qualitative evidence based on student 
self-reports. 
 
INTRODUCTION 
Concept mapping is a technique developed by Prof. Joseph D. Novak at Cornell University in the 1960s to 
visually represent an individual's knowledge structure about a particular topic.  The generated concept map is 
composed of nodes and links.  The nodes represent concepts, while the links represent the relationships between 
the concepts.  The concepts and propositions should be hierarchically structured.  More inclusive, more general 
concepts and propositions are positioned at the top of the map (Novak & Gowin, 1984).  Concept mapping is 
based on Ausubel's theory of meaningful learning.  In the concept mapping process the learner is required to 
make a conscious effort to identify the key concepts in new information and relate them to concepts in his/her 
existing knowledge structure.  Concept mapping has frequently been used as an instructional aid to promote 
learning and retention of new information.  The map produced during the instruction would reflect the structure 
of the students' ideas and display the interrelationships among these ideas.  Concept mapping, thus, could also 
be used to assess the varying degrees of student understanding (e.g., Hay, 2007; Markham, Mintzes, & Jones, 
1994; Moreira, 1979, 1985; Schmid & Telaro, 1990). 
 
Many studies showed that the concept maps of divergent learner groups exhibited different representational 
structures.  Fraser and Edwards (1985), Novak (1988), and Winitzky, Kauchak, and Kelly (1994, p. 127) found 
that experts’ concept maps presented more thorough, elaborate, complex, interconnected and hierarchical 
ordering.  Novices' concept maps were less complex, less structured and organized in isolated bits or small 
chunks.  Kinchin, Hay, and Adams et al. (2000) found that student concept maps could be categorized into three 
major patterns, including spoke, chain and net structures.  The “spoke” structure is a radial structure in which all 
related concepts are linked directly to the core concept, but not linked directly to each other.  The “chain” is a 
linear sequence of concepts in which each concept is linked to those immediately above and below.  A logical 
sequence exists from beginning to end, but the hierarchical relation of many links is invalid.  The “net” is a 
highly integrated and hierarchical network.  To quantitatively assess such difference between concept maps, 
Novak and Gowin’s (1984) scoring scheme has been often adopted.  Experts would be expected to score higher 
on their concept maps than novices.  This scheme scores the structural features of a concept map involving 
propositions, hierarchy, cross links and examples.  The construct validity can be established because these 
features represent different aspects of meaningful learning, specifically concept differentiation and integration 
(Shaka & Bitner, 1996).  Although subsequent researchers have made minor modifications (e.g. such as adding 
a branch count), all tended toward an aggregate score for the structural elements (e.g., Dorough & Rye, 1997). 
 
While most studies emphasize measuring the produced concept map, some (e.g., Deguchi, Yamaguchi, Funaoi, 
& Inagaki, 2004; Karvonen, Rautama, Tarhio, & Turkia, 2001; McAleese, 1998; Rautama, Sutinen, & Tarhio, 
1997; Wong, 1998) take notice of the importance of probing the manner in which a student proceeded to 
generate his/her respective concept map.  It was suggested that examining the concept mapping process would 
help determine the mental activity and knowledge processing that led to the given results.  Wong (1998) thus 
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asked students to recall and provide their actions in generating a concept map.  The student responses showed 
that both high achievers (scored at high levels on achievement tests) and low achievers knew what the 
components of a concept map should be, the need to consider how the concepts were related and that concepts 
should be positioned hierarchically.  However, their thoughts and actions during generating a concept map 
seemed inconsistent.  When asked how they went about organizing concepts and deciding on the links between 
concepts, high achievers emphasized the importance of understanding the concepts and forming meaningful 
relationships between the concepts.  High achievers made an effort to identify the meanings and distinguish the 
concept features, organize the concepts into clusters of related concepts, form correct links between concepts in 
a cluster and between concepts in different clusters, and organize the concepts in the map hierarchically.  Low 
achievers did not put in as much effort as the high achievers in identifying the meanings of concepts and 
forming meaningful relationships between concepts.  Their responses showed a lack of understanding the 
concepts and their links, and a lack of effort at in-depth knowledge processing.  This probably explains why the 
concept maps produced by low achievers were incomplete and had more inappropriate concepts, inappropriate 
links and incorrect hierarchical structure.  Karvonen et al. (2001) and Rautama et al. (1997) also considered a 
concept map as a process rather than an image.  They suggested implementing computing techniques to present 
this concept mapping process.  A computer-aided design was proposed in 1997 and implemented in 2001 to 
trace, record, preserve and visualize a continuous set of mapping actions.  The mapping process information was 
presented as a script that consisted of operations, like adding a new concept to the map and linking it to other 
concepts.  Biswas and Sulcer (2010) and Deguchi, Yamaguchi, Funaoi, and Inagaki (2004) further developed 
computer programs that allowed playback of the mapping process.  They expected that learners would study 
their own knowledge construction approaches and the teachers could inspect the students’ learning problems 
through reviewing the mapping sequences.  It is laborious and difficult for teachers and students to examine or 
realize concept mapping details.  This paper therefore proposes an approach that could efficiently, reliably and 
validly disclose the pattern and useful information concerning student concept mapping sequences. 
 
A METHOD FOR ANALYZING CONCEPT MAPPING SEQUENCES 
Inspired by sequential pattern mining techniques in a large customer transactions database, an approach for 
exploring student sequential patterns in constructing concept maps is proposed.  The sequential pattern is a 
temporal ordered list of elements that appear together in the concept mapping sequences produced by the 
involved or concerned students.  The Direct Sequential pattern Generation (DSG), a graph-based algorithm 
proposed by Yen and Chen (1996) is borrowed and transformed in this work.  Other discovering data sequences 
techniques (e.g., Agrawal & Srikant, 1995; Gomathi, Moorthi, & Duraiswamy, 2008; Tsai & Shieh, 2009) may 
also be suitable for use.  This method is composed of the following stages. 
 
Stage 1.  Build temporal sequences consisting of theoretically meaningful actions.  Because the proposition (i.e. 
concept-relationship-concept triple) is the basic unit of meaning in a concept map (Dochy, 1996), a proposition 
is taken as the essential element for processing mapping-sequence analysis.  Therefore, at the first stage the log 
data by each student during concept mapping, consisting of low level events (e.g., forming concepts or relation-
links), is organized into a sequence of propositions ordered by increasing proposition-generating-time.  As 
shown in Figure 1, Vi, Vj and Vk are created concept nodes, eij and ejk are created relation-links, and {Vi, eij, Vj} 
and {Vj, ejk, Vk} are the formed propositions.  These two propositions could be converted into two connected 
proposition nodes Pij and Pjk.  There is a common joint concept Vj between the propositions Pij and Pjk.  The 
direction of the link between Pij and Pjk is determined by the proposition formation time. 
 

 
Figure 1: Build proposition-based sequences 

 
Stage 2.  Generate large 1-sequences and transform student-sequences.  The following definitions are derived 
from Agrawal and Srikant (1995).  It is defined that a student supports a sequence s if s is contained in his/her 
mapping sequence.  The support for a sequence is the fraction of the total number of students that support this 
sequence.  Each sequence that satisfies a certain minimum support threshold is a large sequence.  A sequence of 
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length k is called a k-sequence and a large sequence of length k a large k-sequence.  To discover the sequential 
patterns is to find the maximal large sequence(s) among all large sequences.  The stage involves finding all large 
1-sequences.  Afterward, each student-sequence is converted into a transformed student-sequence that is an 
ordered list of large 1-sequences.  Table 1 presents an example of students’ (No. 1-5) mapping sequences and 
illustrates how the original student-sequences are transformed to large 1-sequences with the support set to 
100%. 

 
Table 1: Concept mapping sequences of five exemplary students 

Student No. 1 No. 2 No. 3 No. 4 No. 5 

Mapping 
sequence ABCDE BFACDE ACGFBD BGACD GAECBD 

Transformed 
mapping 
sequence 

A, B, C, D B, A, C, D A, C, B, D B, A, C, D A, C, B, D 

Note. A, B, C, D, E, F and G stand for proposition nodes 
 
Stage 3.  Construct association graph.  This stage combines two large-1 sequences to generate a 2-sequence and 
scans all of the transformed student-sequences.  When the support for a 2-sequence achieves the minimum 
support threshold, it is viewed as a large 2-sequence.  A directed edge is then created from the first large 1-
sequence to the second large 1-sequecne.  If the support is set at 100%, the 2-sequence appeared in all 
transformed student-sequences.  The algorithm can be simplified as follows: 
 
 LS1 = { large 1-sequences } 
 LS2 = ∅ 
 if LS1 ≠ ∅ then begin 
 forall permutation 1x1y, where 1x and 1y are selected from LS1 do 
  if 1x 1y appears in the same order in all transformed student-sequences then 
  LS2= LS2∪{<1x1y >} \* generate large 2-sequences *\ 
  CreateEdge (1x, 1y) \* create an edge from 1x to 1y in the association graph *\ 
 end 
 
Using the example in Stage 2, all possible directed edges can be created to construct the association graph as 
shown in Figure 2(2). 
 

 
Figure 2: Procedure for discovering the sequential patterns in Table 1 

 
Stage 4.  Generate sequential patterns.  Based on the association graph, a large n-sequence (n>2) can be 
generated.  If there is a directed edge from the last large 1-sequence of a large 2-sequence found in stage 3 to 
another large 1-sequence, the large 2-sequence will be extended to a large 3-sequence.  The sequence length is 
extended until no large k-sequence can be generated.  As in the example in stage 2, the large 2-sequence 
<A C> can be extended as shown by the bold lines in Figure 2(3).  The resulting <A C D> is a large 3-
sequence.  After finding all large sequences, the large sequences that are subsequences of the other large 
sequences are deleted. The remaining large sequences are maximal large sequences, that is, they indicate student 
sequential patterns during concept mapping.  
The sequential pattern analysis method can be programmed for automatic execution.  The automated method 
can produce a computationally efficient and reliable analysis for unveiling student concept mapping sequences.  
It corrects some of the problems with reliability and computational inefficiency commonly observed with 
human-dependent approaches. 
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AN EVALUATION OF THE SEQUENTIAL PATTERN ANALYSIS METHOD FOR CONCEPT 
MAPPING 
To evaluate the proposed method for probing student concept mapping sequences, a concept mapping activity 
on the topic of electrical energy was arranged.  A computer system was utilized to support this activity and 
collect students’ concept mapping data.  In addition, students’ concept map data were scored to estimate their 
understanding of electrical energy. 
 
PARTICIPANTS 
One hundred and eighty-seven students volunteered to participate in this study.  They were enrolled in an 
elementary teacher preparation program at a teachers college in southern Taiwan, and were taking educational 
theory, curriculum design, and technology integration courses.  The teacher preparation program was designed 
to cultivate elementary generalists because an elementary school teacher in Taiwan usually needs to teach many 
different school subjects.  These students were all capable of using a word processing program, a painting 
program and an Internet browser. 
 
CONCEPT MAPPING ACTIVITY 
The participants attended a “selected terms” concept mapping (Schau, Mattern, Zeilik, Teague, & Weber, 2001) 
activity on electrical energy.  Each participant was given 23 concepts and 6 links, and was asked to 
independently generate a concept map using only these concepts and links.  The given concepts and links were 
extracted from an expert concept map negotiated by two college professors with expertise in electrical energy 
and elementary science education.  Figure 3 presents the expert concept map.  The concepts are arranged in a 
hierarchy with “electrical energy” at the top.  As one travels down a map, the concepts become more and more 
specific and the map is anchored with examples. 

 

 
Figure 3: The expert concept map on the topic of electrical energy 

 
CONCEPT MAPPING PLATFORM 
A web-based concept mapping system was adopted to support the experimental activity.  Figure 4 shows the 
user interface.  The system modules used in this study are detailed as follows. 
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Figure 4: Interface for the web-based concept mapping system 

 
Mapping module.  The mapping module provided functions to generate a concept map on a computer screen.  A 
user could arbitrarily add, change, delete, position or move concept nodes and relation links using a keyboard 
and a mouse.  To decrease the cognitive demand in producing a complete concept map, this system could 
predefine concepts/links, or provide a partial map (fill-in-the-map) in advance. 
 
Tracing module.  The tracing module was used to trace and record the entire data in a concept mapping activity.  
The traced data included every action (such as adding, deleting, positioning and repositioning concept and link 
objects), the action time and the map generated by each individual user or collaborative group.  The system 
stored these data in its database. 
 
Scoring module.  A scoring module was used to semi-automatically score a concept map in real time.  The 
system evaluated the four structural components of a concept map, including the propositions, hierarchy levels, 
cross links and examples.  The concept map to be scored was compared with a criterion concept map.  The 
portions in the former map that also existed in the latter would be given numerical scores.  However, it should 
be noted that not all scoring method take into considering all four components.  Multiple combinations can be 
found from scoring methods that consider all components (Novak & Gowin, 1984) to methods that only 
consider propositions (McClure & Bell, 1990).  In this evaluation study, the expert concept map (Figure 3) was 
used as the criterion concept map.  The professors that provided the expert map determined the scoring rules as 
follows: (a) a valid proposition scored 1 point, (b) a valid hierarchy level scored 5 points, (c) a valid cross link 
scored 2 points, and (d) a valid example scored 1 point.  The expert concept map scored 51 points according to 
the rules. 
 
PROCEDURE 
One by one the participant classes were arranged to carry out the concept mapping activity in a computer 
laboratory at the participants’ college.  The laboratory had IBM-compatible computers.  Each participant was 
required to work independently on an assigned computer.  Two sessions were allocated for each class.  The first 
session was mainly used to introduce the participants to the concept mapping technique and how to use the 
concept mapping system to construct individual concept maps.  This took about 30 minutes.  In addition, a 
reference article on electrical energy was supplied to the participants to help them recall the related existing 
knowledge.  Ten minutes was given for reading the reference.  The second session was used for the formal 
concept mapping activity.  The participants took 40 minutes to generate respective concept maps on electrical 
energy. 
 
RESULTS 
The concept mapping data sets, including mapping sequences and end map products, generated by the 187 
participants were analyzed.  The concept map products were scored numerically, with concept mapping 
sequences examined for sequential patterns.  The results show that the mean concept map score was 24.87 (SD = 
8.90).  The range was 40, with the highest score = 40, and the lowest score = 0.  Those maps with a score in the 
top 27 percentile (score ≥ 32) were classified as high score students.  Those whose score was in the lower 27 
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percentile (score ≤ 19) were identified as low score students.  The mean of the high score students (n = 52) was 
34.38 (SD = 2.03), while the mean of the low score students (n = 52) was 13.21 (SD = 5.61).  The mean for 
correct proposition numbers produced by the high score students was 16.79 (SD = 1.71) and the mean for the 
low score students was 6.58 (SD = 2.70).  The mean length for the maximal large sequences by the high score 
students identical to that of experts was 6.83 (SD = 1.49), and the mean by the low score students was 3.10 (SD 
= 1.48).  While the concept mapping sequences of the concept maps with a score of 40 were analyzed, it was 
found that 18 identical propositions appeared in student sequences and there existed a specific sequential pattern 
(the maximal large sequence) with length 11.  The sequence analysis was reiterated by consolidating the next 
highest score mapping data (score=39).  It was found that the number of identical propositions appearing in the 
mapping data was 18, but the length of the maximal large sequence dropped to 7.  While the sequence analysis 
was reiterated by downward consolidating the third-highest score data (score=38), the fourth-highest score 
mapping data (score=37), and the fifth-highest score mapping data (score=36), the results show that the number 
of identical propositions appearing in concept mapping was 17, 12, and 9 respectively and the length of the 
maximal large sequence was 4, 2, and 0.  The analysis iteration was terminated at the fifth-highest score data, 
because further consolidating lower score data would not generate any large sequences.  Figure 5 presents the 
sequential pattern example by the students whose maps achieved higher scores. 

 

 
Figure 5: Sequential pattern example for superior concept maps 

 
Comparatively, data sets with the lowest five scores were analyzed.  The maps scored 0 shared no generated 
proposition similarity.  No large k-sequences were found, i.e. they shared no common mapping sequences.  If 
these data sets were consolidated with any other mapping data, the large sequence length would remain zero.  
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Therefore, 0-score data sets were excluded from the follow-up sequential pattern analyses.  Still no common 
propositions and mapping sequences were found in the second- and third-lowest score (2 & 3) mapping data.  
The forth lowest score was 4.  The analyses showed that an identical proposition existed with no identical 
mapping sequences.  The fifth lowest score was 8.  It was found that 6 identical propositions existed and the 
maximal large sequence length was 4 (see Figure 6). 

 

 
Figure 6: Sequential pattern example for inferior concept maps 

 
DISCUSSION 
By applying the sequential pattern analysis method proposed in this paper to the practical student concept 
mapping data, differences were found in the sequential patterns between students generating higher and lower-
score concept maps.  The sequential patterns among higher-score students were longer in length.  Further, the 
higher-score students tended to established propositions from more inclusive ones to less inclusive ones in 
temporal order.  To illustrate the finding, the mapping sequential pattern in two 40-score cases was taken as an 
example.  Numbers 1 to 11, as shown in Figure 5, denote the temporal order of the composed proposition items.  
While referring to the hierarchy of the expert concept map on electrical energy (see Figure 3), the proposition 
items contained in the mapping sequential pattern can be roughly classified into three groups.  Items No. 1 and 
No. 2 are subordinate directly to the concept “electrical energy” and are most inclusive, general and abstract in 
the subject domain electrical energy.  Items No. 8 to No. 11 describe the relations with specific examples 
included in the subject domain electrical energy and thus are the least inclusive, most specific and most 
concrete.  Comparatively, the other five items, from No. 3 to No. 7, are less inclusive than propositions No. 1 
and No. 2, and are more inclusive than propositions No. 8 to No. 11.  From the mapping sequential pattern, 
denoted by No. 1 to No. 11, the 40-score students showed a tendency to construct concept maps starting from 
more inclusive propositions to less inclusive ones.  The mapping sequential patterns of 37-40 score, 38-40 score, 
and 39-40 score students also unanimously showed this trait.  These high-score students first identified and 
selected the main idea of the concept mapping activity, “electrical energy,” as the most super-ordinate concept 
of all other concepts.  They then identified the concept categories under the super-ordinate concept.  Coordinate 
concepts such as “thermal energy,” “mechanical energy,” or “luminous energy” were specified.  These 
coordinate concepts were spaced below the super-ordinate and each was connected to it by a line to represent a 
relationship.  After that, specific concepts related to one another within individual coordinate level categories 
were listed.  These concepts were subordinate concepts.  A line was drawn from each subordinate concept to its 
coordinate level concept and their relationships were specified.  The sequential analysis indicated that 
subordinate terms like “wind power,” “tides” and “hydraulic power” were first connected to their coordinate 
level concept, “mechanical energy”; and then “solar energy” to “luminous energy.”  However, the sequences 
connecting “terrestrial heat,” “fossil fuels,” “nuclear fuels” and “solar energy” with “thermal energy” were 
inconsistent.  The students appeared indecisive in making these connections.  Finally, they chose and linked 
appropriate examples to each specific concept, for instance, “solar cells” to “solar energy.”  These students 
could easily include and connect relevant examples.  In contrast to the higher-scoring students, the mapping 
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sequences produced by the lower-score students were quite different.  The mapping sequences, starting points, 
and anchoring points among these students also varied from one another.  However, they shared a feature that 
their first and the following correct propositions revolved around more subordinate concepts and examples.  
Although these students were given the same time as others for creating their respective maps, they could form 
propositions only for more concrete concepts.  Their concept maps had more incorrect propositions and 
inappropriate structure types.  This was probably because they were limited in their ability to identify the 
meanings of concepts, particularly at a more abstract level, and form meaningful relationships between concepts.  
The differences between high and low score students in their concept mapping sequence corresponds with the 
viewpoints of Novak and Gowin (1984, p. 98).  They suggested that starting from more super-ordinate concepts, 
then gradually adding more subordinate concepts could lead to a well-organized, hierarchically structured 
concept map that would attain a high score if measured using Novak and Gowin’s scoring scheme.  The findings 
are also consistent with those from Wong (1998) that more knowledgeable students self-reported that they 
“identified the most inclusive concept or major concept (first)…Next identified the second most inclusive 
concept” in constructing a concept map.  By comparing the concept mapping sequence of high score students, a 
teacher could determine whether a student is choosing an inappropriate starting point or taking a dissimilar 
sequence for composing a concept map.  This student is very likely to create a dissatisfactory concept map and 
can be spotted in an earlier stage through the comparison.  Whether this student is decisive in choosing concepts 
or making connections could help to judge whether he/she has a problem, conflicting interpretation, 
misconception, or complete ignorance about specific concepts or connections.  Concept mapping sequences by 
higher-score students could be referenced to judge what portion (concepts or connections) of a concept map by 
the lower-score student should be dealt with and what priorities should be taken.  The lower-score student might 
need to have those concepts or connections explicitly stated through didactic exposition and reinforced through 
practice and feedback.  The teacher could use a created map with its construction sequence from higher-score 
students as an instructional aid when guiding a lower-score student during concept map development.  
Alternatively, the teacher could set up heterogeneous pairs and require them to strive for consensus regarding 
their maps’ appearance.  The difference in their original concept maps and mapping sequences allows students 
to weigh their own and others' perspectives, and then be able to justify, confirm or modify their concepts and 
conceptual relationships. 
 
CONCLUSIONS 
Understanding student concept mapping sequences is important.  This information helps understand student 
learning performance.  If students learn in an appropriate manner, student problems can be detected at an early 
stage and specific sequences could be made explicit for students.  Recurring student sequential patterns might 
indicate some problem with instruction and thus could suggest directions for instructional improvement.  This 
paper proposes a method for discovering concept mapping sequences.  The sequential method is derived by 
transforming a sequential pattern mining algorithm used in scientific and commercial domains.  The proposed 
method was implemented as a computer program to automatically yield results.  Uncovering student concept 
mapping sequences has traditionally relied upon manual tracing of students' self-reports or concept mapping 
data logged by computer.  Those techniques are labor intensive, not practical for large data sets and subject to 
individual bias.  The sequential method presented in this paper is clearly superior to any method that requires 
human intervention.  Attributable to the automated nature of the program, the proposed method could analyze 
large data sets in a fraction of the time previously required and moreover yield objective results that are reliable 
and reproducible.  While applying the sequential method to practical student concept mapping data it was found 
that the mapping sequences produced by higher-score students were similar.  These sequences showed a pattern 
in which most of the constituted propositions were the same and formed progressively from more inclusive to 
less inclusive.  This pattern would become obscure in lower-score students.  Low-score students' concept 
mapping sequences appeared very diverse.  The findings substantiate the theoretical expectations (Novak & 
Gowin, 1984) and correspond to the qualitative research findings based on student self-reports (Wong, 1998).  
Although real data rather than artificial data was used for the evaluation makes the efficacy of the sequential 
method more worthy of recognition, this study was carried out using specific and limited participants.  This 
would suggest further evaluation with larger, different and diverse populations.  In addition, the real student data 
was collected in a concept mapping activity with some constraints (“selected terms” concept mapping).  It is 
suggested that this method be also tested on the monitoring and analysis of students engaged in more open-
ended concept mapping activities. 
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